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A B S T R A C T

Biodiesel has emerged as a viable alternative to fuel, offering a more sustainable and environmentally friendly
energy option. The current study explores the modeling and optimization of biodiesel production from waste
cooking oil using artificial intelligence and genetic algorithms. The study focuses on enhancing five process
parameters: methanol-to-oil molar ratio, catalyst concentration, reaction temperature, reaction time, and stirring
speed. The optimization of these parameters is complemented by a life cycle assessment to reduce environmental
impact. The approach considers biodiesel yield, high heating value, and energy consumption as output variables,
thereby advancing sustainable biodiesel production. The findings indicated that, under optimal conditions
(methanol-to-oil ratio of 1:6.9, stirring rate of 500 rpm, reaction duration of 20 s, reaction temperature of 30 ◦C
and catalyst concentration of 1), the transesterification process achieved the maximum biodiesel yield of 97.76
%. The optimization reached a low environmental impact in the production of biodiesel in an efficient way.
Additionally, SWOT analysis helps to develop strategic methods that can enhance efficiency and increase
competitiveness. The research suggests that, by optimizing the chemical process in biodiesel production, it is
possible to achieve a high yield and high heating value of the biofuel, along with feasible environmental miti-
gation strategies.

1. Introduction

Energy is a fundamental requirement for the economic progress of
any country. Fossil fuels like crude oil and coal serve as the main energy
source. However, the extensive use of crude oil has become of significant
socioeconomic concern, especially for nations that have limited crude
oil reserves. This situation has caused a rise in crude oil prices, causing
global economic instability [1]. This prompts a pursuit of alternative,
renewable, and cleaner energy sources directed at reducing reliance on
fossil fuels and curbing greenhouse gas emissions. Among these alter-
natives, biodiesel, a type of biofuel, has emerged as particularly note-
worthy [2]. One goal of the European Green Deal (EGD) is to cut
greenhouse gas emissions. More than 75 percent of greenhouse gas
emissions in the EU are caused by the use and production of energy [3].
Therefore, decarbonizing the EU energy system is essential to meet the

EU’s long-term plan to achieve carbon neutrality by 2050 and to reach
our 2030 climate objectives. Furthermore, the EU strove to have even
greater ambition and action in this crucial decade during the 28th UN
Climate Change Conference (COP28) climate discussions. It sought to
phasing out fossil fuels and boosting the capacity of renewable energy
sources and energy efficiency [4].

Biodiesel typically undergoes a transesterification process in which a
triglyceride, such as fat or oil, reacts with an alcohol in the presence of a
catalyst. Currently, the main method to produce biodiesel involves ho-
mogeneous catalysis, in which a basic catalyst, such as potassium hy-
droxide (KOH) or sodium hydroxide (NaOH), is dissolved in methanol
[5]. The resulting biodiesel exhibits nearly identical properties to those
of conventional diesel fuel, including energy content, viscosity, and
phase characteristics. Consequently, it can be seamlessly integrated into
diesel engines with minimal adjustments or, in some cases, no
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modifications at all [6]. Researchers have conducted in-depth studies of
biodiesel and other potential alternatives to reduce reliance on crude oil.
Alternative fuels refer to substances resembling fossil fuels in their
properties and efficiency of use [7]. Biodiesel, produced from vegetable
oils or animal fats, is a methyl ester that is employed as a fuel for diesel
engines [8]. The most important rawmaterials include waste oils such as
waste cooking oil (WCO) [9]. WCO can be repurposed by recycling it
through a transesterification process to create biodiesel. Employing
WCO as a biodiesel feedstock offers a solution to problems like water
contamination and blockages in drainage systems, which reduces the
need for additional cleaning [10]. While numerous studies have high-
lighted the environmental advantages of biodieselcompared to fossil
fuels [11], it is important to recognize that biodiesel can also pose
certain adverse impacts on the environment [12]. This approach proves
to be highly efficient in addressing disposal concerns while partially
meeting the global energy demand [13]. However, the interest in eval-
uating the costs and environmental impact of biodiesel production arises
from concerns that are related to energy consumption, pollutant emis-
sions, and the depletion of natural resources due to these production
processes [14]. In line with the foregoing, effective exploration of
renewable energy sources has been undertaken to mitigate the adverse
impacts of CO2 emissions and other greenhouse gases that result from
the use of fossil fuels [15].

Machine learning, a component of artificial intelligence (AI), oper-
ates on the principle of autonomous learning, enabling computers to
learn without explicit programming. With sufficient training data, these
algorithms discern patterns, assimilate knowledge, and draw conclu-
sions [16]. The decision to employ a machine learning algorithm is
rooted in its capability to uncover intricate connections among diverse
input parameters that can often exhibit nonlinear or polynomial asso-
ciations [17]. The model’s adeptness in comprehending these intricate
relationships dictates its effectiveness in predicting outcomes. Similar to
AI and machine learning methodologies, the adoption of genetic algo-
rithms (GA) has been embraced increasingly beyond traditional com-
puter science applications [18]. Recently, the application of AI in
biodiesel production has revolutionized the optimization of the trans-
esterification process [19]. Enhancing biodiesel yield in the trans-
esterification process involve optimizing key processing factors. These
include methanol/oil ratio, catalyst concentration, stirred rate, and re-
action time [20]. Additionally, other factors impact the sustainability of
biodiesel produced from waste cooking oil, including the collection
process of the used oil [21]. However, because conducting experimental
optimization often requires expensive and time-consuming laboratory
tests, there was a need to devise a method would require fewer experi-
mental runs while optimizing biodiesel production parameters [19]. The
integration of IA with genetic algorithms (GA) emerged as a contem-
porary and highly effective approach for this purpose [22]. These
cost-effective methods, can enhance efficiency and reduce biodiesel
production costs from waste oil. They offer a more sustainable alterna-
tive to fossil fuels. This AI-driven approach not only streamlines the
production process, but also contributes significantly to sustainable
energy practices, thus paving the way for advancements in environ-
mentally friendly fuel production methodologies [23].

Optimization techniques, such as linear regression, response surface
methodology (RSM), and ANN, have been employed to enhance the
transesterification process by increasing the yield and HHV. Previous
research papers on biodiesel production optimization have explored
various approaches to maximize biodiesel production. These methods
have been leveraged due to their ability to model and optimize complex
systems, thus aiding the efforts to maximize biodiesel production.
Kumar et al. [24] emphasized that Response Surface Methodology
(RSM) stands out as the widely preferred statistical technique to opti-
mize the variables involved in the transesterification process in biodiesel
production. Studies conducted by Vinoth et al. [25] utilized ANN
methodology to optimize the biodiesel production parameters. While
the work of Vinoth Arul Raj et al. [26], Soji-Adekunle et al. [27], and

other researchers, delved into optimizing the parameters of the biodiesel
production process employing both ANN and RSM techniques. Existing
references have not used regression models based on machine learning
(ML) and Genetic Algorithms (GA) to optimize output variables, such as
yield and HHV in biodiesel production from WCO. This reveals a sig-
nificant gap in research. It indicates an untapped avenue for enhancing
biodiesel production efficiency.

The existing literature emphasizes that the primary focus in biodiesel
production concerns performance. This encompasses the experimental
design’s response in both parametric and optimization studies [28].
However, this emphasis solely on performance may overlook essential
aspects due to the energy intensive nature of biodiesel production, as
well as its generation of waste. Hence, aside from production yield, it is
necessary to account for and prioritize energy consumption and waste
generation during any optimization of the transesterification process
[29]. Integrating these factors into the optimization strategy is consis-
tent with the principles of sustainability and environmentally friendly
practices.

Life Cycle Assessment (LCA) has been used extensively in comparing
the environmental sustainability of bio-based and fossil-based products
[30]. LCA examines the environmental repercussions of a product or
process from inception to utilization, facilitating comparisons of envi-
ronmental impact. This robust method enables the identification of
environmental hotspot sources and triggers, thereby aiding decision
makers and policy makers in devising solutions [31]. Several researchers
have conducted extensive Life Cycle Assessment (LCA) studies on
various biodiesel production processes. These include comprehensive
investigations of different feedstocks, such as waste cooking oil [32].
These LCA studies yield diverse outcomes due to variations in system
boundaries, functional units, and study objectives. Typically, these as-
sessments focus solely on energy balance and greenhouse gas emissions.
However, this work takes a more comprehensive approach by a thor-
ough LCA in lab scale for this biodiesel production. Because of this has
been made a midpoint and endpoint indicator assessment. Under-
standing the implications between these categories is necessaryl for a
holistic evaluation of the environmental impact of biodiesel production.

Also, the complexity of biodiesel production systems leads to sig-
nificant outcome variations due to differences in input data and
geographical contexts [33]. Data availability and precision present sig-
nificant challenges, as the accuracy and outcomes of the Life Cycle
Assessment (LCA) model depend on the quality of input data. These
challenges contribute to knowledge gaps in waste cooking oil-based
biodiesel production, particularly regarding optimal operating param-
eters and their environmental implications. Additionally, there is
limited understanding of the interactions among various input factors,
such as feedstock characteristics and process parameters. The absence of
standardized methodologies further complicates comparative analysis
and definitive conclusions.

Addressing these knowledge gaps is necessary in order to devise
effective strategies and decision-making processes that will improve
biodiesel yield and reduce environmental impact. Therefore, in this
study, the concurrent influence effects of catalyst concentration,
methanol-to-oil molar ratio, reaction time, stirred rate, and temperature
were explored. This involved the use of models of WEKA (Waikato
Environment for Knowledge Analysis) that employed algorithms and
approaches. From this comprehensive suite, models that exhibited the
fewest errors were chosen for each output variables. This ensured the
most accurate predictive performance. The interaction effects between
the reaction variables were examined and those variables that affect the
transesterification process most significantly were optimized using GA.
Then, a life cycle assessment was conducted based on the optimized
values. Finally, a SWOT analysis was conducted to gain deeper under-
standing of the use of waste cooking oil for biodiesel production, in the
hope of reducing its environmental and human impact (Fig. 1). These
efforts to enhance biodiesel yield and HHV while minimizing energy
consumption, specifically by reducing the reaction temperature, the
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reaction time, and the speed of the production process. Additionally, we
have endeavored to identify and address the current gaps and forth-
coming challenges within this domain, with the aim of enhancing the
economic viability of the biodiesel production process.The uniqueness
of this study lies in its strategy for creating an environmentally efficient
biodiesel production method and assessing its environmental impact by
Life Cycle Assessment (LCA) criteria. The production of biodiesel from
waste cooking oil contributes to decreasing the disposal of such oil,
which is considered to be hazardous waste according to European Union
standards.

2. Materials and methods

2.1. Materials

The WCO that in the biodiesel production process used was collected
from a restaurant at La Rioja University, in Logroño (La Rioja, Spain).
These samples were collected in plastic containers, homogenized, and
stored under ambient temperature and atmospheric pressure. It was
essential to eliminate solid particles and water present in the oil.
Accordingly, the oil was heated to 120 ◦C for 12 min to reduce the water
content [34]. Then, the oil was filtered using a cellulose filter to remove
residues before use.

The methanol (CH3OH, 99.8 % extra-pure, CAS: 67-56-1) and so-
dium hydroxide (NaOH, 98 % extra-pure, CAS: 1310-73-2) that were
needed for the transesterification process were sourced from Merck Co.,
Ltd. (Darmstadt, Germany).

2.2. Experiments design

Design of Experiments (DoE) is a statistical approach employed to
investigate the relationships between several input parameters and one
or more output (response) variables. This methodology helps in identi-
fying which variables most significantly affecting the output and in
determining their optimal values. Moreover, DoE aims to minimize the
number of experiments or data points required to obtain reliable results.
A Box-Behnken Design (BBD) was used, with the intention of validating
initial hypotheses with minimal data. A BBD is a form of fractional
factorial design that allows the effect of multiple independent variables
on a response or dependent variable to be evaluated, with a relatively
low number of trials compared to a full factorial design. This makes it
ideal for optimizing processes and reducing costs and time in

experimentation [35].
Utilizing BBD as the foundation, Table 1 details parameter values

and levels necessary for executing the DoE. These variable ranges,
drawn from referenced sources [36–39] were chosen carefully to
encompass existing literature and thus foster a comprehensive explo-
ration of the variables under investigation.

Stat-Ease 360 Design Expert Version 7.1.6 (Stat-Ease, USA) was used
to generate a design matrix for the biodiesel production process,
emphasizing five input parameters. The parameters were catalyst dose
(A), methanol-to-oil molar ratio (B), reaction temperature (C), reaction
time (D), and stirring speed (E). They are shown in Table 2. These pa-
rameters varied systematically in three levels (− 1 for low, 0 for the
midpoint, and +1 for high) within the Box-Behnken Design (BBD)
framework. This resulted in a matrix of 33 distinct experiments. The
creation of this matrix followed the definition of specific parameters and
their corresponding values for biodiesel production.

2.3. Experimental procedure

Biodiesel was manufactured in a laboratory setting by the trans-
esterification process, employing methanol, waste cooking oil, and
NaOH as catalyst. The transesterification process was carried out in a
250 mL flat-bottom flask, which held 50 mL of waste oil. This flask was
set on a magnetic stirrer coupled with a heated plate. During the reac-
tion, a Metrix PX-120 digital multimeter (Metrix, Chauvin Arnaud,
France) was used to monitor the power consumption (W) of the mag-
netic hot stirrer. Following completion of transesterification, the stirring
and heating were ended. The newly produced biodiesel was washedwith
deionized water to eliminate residual alcohol, catalyst, and reaction
byproducts. A quantity of cleaning that water equal to 60 wt% of the
biodiesel was used [40]. Subsequent tests were conducted according to

Fig. 1. Methodological workflow.

Table 1
Input process parameters and their respective levels for the process.

Input/Units Code values Levels

− 1 0 1

Catalyst dose [wt.%] A 1.0 1.5 2.0
Methanol to oil molar ratio [mg/L] B 6.0 7.5 9.0
Reaction temperature [◦C] C 20.0 30.0 40.0
Reaction time [s] D 20.0 30.0 40.0
Stirred speed [rpm] E 500 750 1000
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Table 2 to determine the yield (η) and higher heating value (HHV) of the
washed biodiesel.

The biodiesel yield, which indicates the percentage mass ratio of the
biodiesel generated to the total mass of the waste cooking oil used is
determined by Equation (1).

Yield (%)=
W biodiesel (g)
W WCO (g)

⋅100 (1)

where Wbiodiesel is the weight of biodiesel after transesterification pro-
cess and e WWCO is the weight of waste cooking oil used for the trans-
esterification process. All the experiments trials were conducted in
triplicate to ensure consistency and reduce variations in the findings of
the analysis. The relative deviation was maintained within the order of
±1.5 %, and the average results were presented.

The high heating value of the biodiesel sample was determined by a
bomb calorimeter (PARR.

1351 Bomb Calorimeter; Parr Instrument, USA) following the ASTM
D240 standard.

2.4. Machine learning regression models description

Following the establishment of the Design of Experiments (DoE) and
subsequent laboratory tests, prediction models were formulated by use
of input parameters and the results of tests. The development of
regression models in this study was facilitated by the use of machine
learning.

The implementation of, WEKA (Waikato Environment for Knowledge
Analysis), version 3.9.5, open-source machine learning software, a
product of the University of Waikato Hamilton, New Zealand, stands as a

comprehensive suite. It comprises diverse machine learning methodol-
ogies that are tailored to resolve the complexities inherent in data
mining endeavors. WEKA is equipped with tools for data pre-processing,
regression, classification, association rules, clustering, and visualization.
It includes a variety of open-source machine learning algorithms that are
designed to address practical data mining challenges. Its meticulous
process ensures the accuracy and reliability of the models. Initially, the
database underwent a normalization process. This was pivotal to align
the scale of various data parameters and thereby mitigate any potential
bias arising from disparate data magnitudes. Following the normaliza-
tion, the Randomize filter was applied. This step was crucial in
randomizing the instances within the database, which serves a dual
purpose. Primarily, it helps to prevent the training algorithms from
conforming to local trends, which might skew the model’s performance.
Secondly, it ensures the development of robust regression models that
are capable of capturing and generalizing global-level behaviors.
Following randomization, the database was bifurcated using the Strat-
ifiedRemoveFolds filter or fold for cross validation. This division allo-
cated 75 % of the data for training and validation purposes, while
reserving the remaining 25 % available for testing. Such a stratified
approach guarantees a representative distribution of data across training
and testing sets. This is essential to maintain the integrity of the model
evaluation process.

WEKA played a pivotal role in the model generation process.
Employing advanced prediction algorithms is imperative to ensure
precise handling of complex interdependencies and effective manage-
ment of correlated variables. In this study, algorithms from the following
groups were used for modeling the yield and HHV: (i) neural network
models, (ii) statistical models, (iii) linear models, (iv) decision trees, (v)
lazy methods and (vi) rules. Further, in the quest to identify the most
optimal model, AutoWEKA (run for 360 min) was employed. AutoWEKA
is instrumental in automating the model selection process. This
approach is particularly effective in sifting through various models to
identify the one that exhibits the best performance on the given dataset.
In the final phase, the model adjudged as the best by AutoWEKA un-
derwent a manual testing process. Here, the focus was on validating the
model’s efficacy by computing the testing error on the 25 % of data
earmarked for testing. This step is vital to confirm the model’s accuracy
and its ability to generalize beyond the training dataset, and thereby
ensure its applicability in real-world scenarios. By means of this
comprehensive process, we have sought to develop machine learning
regression models that are not only accurate in their predictions, but
also robust and reliable in their application.

To identify the most effective machine learning algorithm for opti-
mizing biodiesel production parameters, the proposed models were
subjected to a training and testing regimen, culminating in a compara-
tive assessment of their performance. In this research, the algorithms
were applied directly to the collected dataset. Validation of the models
was conducted during the testing phase to confirm their broad appli-
cability. The final step involved optimizing the chosen model to ensure
the best possible outcomes.

2.5. Performance metrics

The machine learning models’ performance was assessed using three
performance indicators: Correlation Coefficient (Corr), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE). These indicators
were computed using of Equations (2)–(4).

Corr=

∑N

a=1

(
Ya Experiment − YExperiment

)2( Ya Experiment − Y Model
)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

a=1

(
Ya Experiment − Y Model

)2 ∑N

a=1

(
Ya Experiment − Y Model

)2

√ (2)

Table 2
Reaction conditions and η and HHV results of transesterification based on the
Box–Behnken design.

Run nº Input process parameters (code values) Outputs process variables

A B C D E η HHV

(wt.%) (mg/L) (◦C) (s) (rpm) (%) (MJ/kg)

1 1.0 6 30 30 500 0.93 42.70
2 1.0 6 30 30 1000 0.93 41.83
3 2.0 6 30 30 500 0.40 42.06
4 1.5 6 30 30 1000 0.95 41.78
5 1.5 6 20 20 750 0.29 41.94
6 1.5 6 40 20 750 0.29 42.19
7 1.5 6 30 30 750 0.79 42.32
8 1.5 6 20 40 750 0.31 41.61
9 1.5 6 40 40 750 0.57 42.87
10 1.0 9 30 30 500 0.88 43.99
11 1.0 9 30 30 1000 0.55 42.26
12 2.0 9 30 30 500 0.50 43.72
13 2.0 9 30 30 1000 0.23 42.40
14 1.5 9 20 20 750 0.59 42.30
15 1.5 9 40 20 750 0.91 43.13
16 1.5 9 30 30 750 0.84 42.83
17 1.5 9 20 40 750 0.85 42.29
18 1.5 9 40 40 750 0.82 42.30
19 1.0 7.5 30 20 750 0.91 43.41
20 1.0 7.5 20 30 750 0.94 43.11
21 1.0 7.5 40 30 750 0.89 43.30
22 1.0 7.5 30 40 750 0.92 43.63
23 2.0 7.5 30 20 750 0.75 40.48
24 2.0 7.5 20 30 750 0.34 42.06
25 2.0 7.5 40 30 750 0.23 41.93
26 2.0 7.5 30 40 750 0.78 41.72
27 1.5 7.5 30 20 500 0.88 42.65
28 1.5 7.5 30 20 1000 0.97 42.33
29 1.5 7.5 20 30 500 0.87 43.09
30 1.5 7.5 40 30 500 0.86 42.21
31 1.5 7.5 30 20 1000 0.83 44.14
32 1.5 7.5 30 40 1000 0.92 42.30
33 1.5 7.5 40 30 500 0.83 42.65
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

a=1

(
Ya Experiment − Ya Model

)2

√
√
√
√ (3)

MAE=
1
N

∑N

a=1

⃒
⃒Ya Experiment − Ya Model

⃒
⃒ (4)

where YExperiment are the outputs obtained experimentally, whereas
YModel are outputs of the models, Y is the mean of observed values in Y
variables and N is the total number of experiments.

2.6. Optimization based on genetic algorithms (GA)

Genetic algorithms (GAs) represent a powerful heuristic search
technique. They were inspired by the natural selection mechanism of
evolution [41] and are widely utilized in the field of artificial intelli-
gence. Their primary role is to seek optimization solutions in scenarios
where conventional methods grapple with complexity, such as situations
involving a substantial number of variables to optimize or highly
nonlinear problems saturated with constraints [42]. Using genetic al-
gorithms enables the discovery of solutions that may not be obvious or
intuitive. This approach can lead to fresh perspectives and enhance the
efficiency and effectiveness of various processes, such as biodiesel pro-
duction [43]. Predictive models were created as depicted in Section 2.3,
being for Weka the basis of its training and also of the evaluation of each
instance of the GA’s population. In this work (Fig. 2), the initial step was
to create an initial population by indicating the number of input pa-
rameters, their names, and ranges. The initial population size was
determined to be sufficient to cover the entire search space without
incurring excessive computational costs. Typically, this population is
generated by random combinations, although it can also be introduced
using heuristic techniques [44]. In this case, the study involved 100
individuals. Additionally, the output variables yield and HHV were
defined along with their ranges. The final part of this stage involved
defining the preset objectives for the algorithm to achieve. These ob-
jectives were to increase the yield (η) and the heating value (HHV) of the
biodiesel obtained, while minimizing catalyst dose (A), methanol-to-oil
molar ratio (B), reaction temperature (C), reaction time (D), and stirring
speed (E) considered for its production. Furthermore, an objective
function, Ji, was established to assess the difference between the preset

objectives and the output variables, yield and HHV, derived from the
predictive models, alongside their respective input parameters. This
objective function (see Equation (5)) was defined as the sum of all ab-
solute errors between these predicted outputs and the target values (A,
B, C, and E) to be minimized, as listed in Table 4.

Ji =
⃒
⃒ηmax − η iModel

⃒
⃒+

⃒
⃒HHVmax − HHV iModel

⃒
⃒+

⃒
⃒Amin − A iModel

⃒
⃒+

⃒
⃒Bmin

− B iModel

⃒
⃒+

⃒
⃒Cmin − C iModel

⃒
⃒+

⃒
⃒Dmin − D iModel

⃒
⃒+

⃒
⃒Emin − E iModel

⃒
⃒ (5)

The process of minimizing the objective function Ji for each indi-
vidual “i” involves using input parameters to calculate outputs based on
the predictive models obtained from Weka, and an Excel program to
evaluate the absolute errors. As the optimization method proceeds, in-
dividuals are evaluated by the objective function, and those best adapted
are selected for the subsequent generation. This selection is random but
proportional to each individual’s performance against the objective
function, allowing better-adapted individuals to be chosen more
frequently. The crossover process then combines the selected parents to
form the next generation. Various crossover methods, including one-
point and two-point crossovers, are used to improve the algorithm’s
convergence. After crossover, random mutations ensure exploration of
the search space. The mutation probability is critical. It can be manually
set or calculated using an expression from Schaffer et al., based on
experimental results to estimate the optimal value. Once the new pop-
ulation has been formed, it must be reduced to match the original
population size. This reduction can be simple or elitist, depending on
whether the selection is from the descendants alone or from both the
parents and descendants based on their fitness. The algorithm has
converged when at least 95 % of the population shares the same value
for a gene. The stopping criterion used dictates convergence when a
certain percentage of the population’s individuals have converged. For
successive optimizations, an initial population is generated within the
studied range of values for each database. After evaluating the initial
individuals, parent selection, crossover with a particular mask, and
mutation follow, with the reduction set as elitist and a stopping criterion
at 98 % similarity of the best value to the generation’s mean. Once the
best model for each variable has been obtained, the configuration is
extracted to enable its automatic use in the genetic method, thereby
facilitating the generation of predictions.

2.7. Life cycle assessment method

The International Organization for Standardization Standard (ISO)
14040/14044 [45] was followed in the life cycle assessment of this
biodiesel production process. The LCA approach consists of four phases.
These include (i) defining the goal and scope, (ii) conducting a life cycle
inventory, (iii) assessing the impact of the life cycle, and (iv) inter-
preting the results. The manufacture of 1 kg of biodiesel from used
cooking oil was chosen as the functional unit to specify the goal of this
investigation. This biodiesel production process system boundaries are
limited to a “gate-to-gate” method. This method determines the ele-
ments that probably have an impact on the environment using scaled-up
inventory data. Using sodium hydroxide as the catalyst for the trans-
esterification process takes into account the midpoint indications in the
manufacture of biodiesel quantitatively.

The first step in LCA method is crucial since the technique used for
the subsequent steps will rely on the study’s goals [46]. In the second
step, it is necessary to collect all system inputs and outputs. In an LCA

Fig. 2. Optimization with Genetic Algorithms workflow.

Table 3
Results for the errors in η and HHV in AddRegresion model.

Train Test

Corr MAE RSME Corr MAE RSME

η 0.995 0.008 0.024 0.986 0.007 0.023
HHV 0.807 0.097 0.123 0.787 0.098 0.134
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study, this is the most costly and time-consuming step. Foreground and
background data are the two types of data that typically should be listed
in this step. According to Kiehbadroudinezhad et al. (2023) [31], fore-
ground data relates to the kind and quantity of all of the system’s inputs
and outputs. However, Background datan is typically gathered from
reliable databases. It is also connected to the environmental effects of
the system’s material and energy production and transportation. Back-
ground information for this investigation was sourced from the EcoIn-
vent 3 database, which comprises life cycle inventory data covering all
economic activities associated with various human activities. It is a
consistent and coherent database [47]. For the third step of evaluating
life cycle impact, several baselines may be used in accordance with the
goals of the research. Due to its goal, midpoint and endpoint indicators
have been used in the current work. For the midpoint indicator, the
CML-IA database was used, whereas ReCiPe was used for the endpoint
indicator. The midpoint indicators focus on specific environmental is-
sues, such as abiotic depletion, ozone layer depletion, or global warm-
ing. However endpoint indicators have an environmental impact on
three higher aggregate levels: human health, ecosystems, and resources.
Understanding of the LCA data is made easier by converting midpoints
to endpoints.

3. Results and discussion

3.1. Experimental results, model evaluation and selection

After completing the thirty-three transesterification processes ac-
cording to the DoE design matrix, outputs process variables were
established in the laboratory. These results appear in Table 2. The
dataset was processed and assessed using WEKA, Version 3.9.5. As an
open-source tool for machine learning, it facilitated the training, testing,
and evaluation of the model’s efficacy. Initially, a suite of machine
learning algorithms was used for training using the dataset, that
comprised input parameters and output variables gathered from labo-
ratory experiments. WEKA software was used to create various predic-
tion models for each of the input parameters that were analyzed. The
determination of the bests algorithms was based on their prediction
errors. In this case, three key metrics were utilized: mean absolute error
(MAE), root mean square error (RMSE), and the correlation coefficient
(Corr). Among these models, Additive Regression (AR) was identified as
the most effective model, it produced the fewest prediction errors for the
output variables of yield and HHV. AR operates as a non-parametric
regression technique that models the dependent variable as an aggre-
gate of smooth functions of each independent variable [48]. This
non-parametric approach does not assume a specific functional form for
the relationship between the dependent and independent variables. This
provides greater flexibility in capturing complex, non-linear interactions
[49]. Each function represents the effect of a single independent vari-
able. This enables the model to adapt to various shapes and forms,
depending on the underlying data structure. A notable feature of AR is
its ability to handle high-dimensional data while maintaining inter-
pretability. This enables as each component of the model to be examined

individually. This approach is particularly useful in scenarios where
understanding the individual effects of predictors is as important as the
predictive accuracy of the model. Parameters selected for applying AR in
this study were as follows: batch size—100, classifier—bagging,
shrinkage—1, and the number of iterations—30.

The most efficient model performance (AR) was determined by its
higher Corr value (close to one) while minimizing the MAE and RMSE
values (close zero). Table 3 displays the Corr, RMSE, and MAE. The Corr
values are notably close to “1″, indicating a strong correlation between
the experimental observations and the predictions made by the Additive
Regression (AR) models. Specifically, the yield showed the highest
correlation (Corr = 0.9957), while the Higher Heating Value (HHV) had
the lowest correlation (Corr = 0.8073). The low values of MAE and
RMSE for the analyzed variables indicate that the regression models
align closely with the experimental results. This demonstrates their ac-
curate fitting and strong generalization ability. In this case, the yield (η)
reveals the lowest MAE and RMSE for training and testing, respectively
(MAE = 0.008 and RMSE = 0.024; MAE = 0.007 and RMSE = 0.023),
while the higher heating value (HHV) has the highest MAE and RMSE for
training and testing, respectively (MAE = 0.097 and RMSE = 0.123;
MAE = 0.098 and RMSE = 0.134). Similar results were obtained by
other researchers using different regression models to predict η and
HHV. For example, Daniyan et al. [50] proposed an ANN to predict η in
the production of biodiesel from frying oil using the same process pa-
rameters. With a Central Composite Design (CCD) involving 15 experi-
ments, the values obtained for Corr., MAE, and RMSE were, respectively
for training: 0.9972, 0.36, and 1.83. Similarly, Mustapha et al. [51] used
multi-response surface methodology (MRS) to determine the HHV from
a mixture of various non-edible vegetable oils using the same process
parameters. In this case, using a second-order polynomial model with 9
experiments, the values obtained for Corr., MAE, and RMSE were,
respectively for training: 0.97, 0.310, and 0.398.

3.2. GA optimization

After the machine learning-driven regression models were selected,
Genetic Algorithm (GA) was employed to fine-tune the parameters that
were involved in the biodiesel production process. In this case, the al-
gorithm that exhibited the strongest capability for generalization (AR)
was employed to identify the optimal values of the parameters in the
biodiesel manufacturing process. Table 4 shows a combination of the
five input parameters that were studied for achieving optimal biodiesel
production using GA. This approach aimed to maximize yield and HHV,
while also reducing catalyst usage, the methanol-to-oil molar ratio, and
energy consumption during production (minimizing reaction tempera-
ture, reaction time, and speed). The columns of Table 4 displays the
input process parameters and the responses in this transesterification
process optimization, the objective (minimum, within a specified range,
and maximum), the minimum and maximum values within the biodiesel
production range, and the optimized values. The optimal values for the
transesterification process includes the catalyst dose (A), methanol-to-
oil molar ratio (B), reaction temperature (C), reaction time (D), and
stirring speed (E). The latter were identified as 1 wt%, 6.9 mg/L, 30 ◦C,
20 s, and 500.1 rpm respectively. The Generation indicates the number
of iterations that, in this case, was 12, to arrive at these optimized
values.

To confirm the optimal conditions, an experiment was conducted
under this specific circumstances. This experimental validation yielded a
97.8 % success rate in biodiesel production. This confirmed that the
predicted optimal conditions were appropriate. The results showed a
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of
1.698 each, indicating a close match with the experimental data.

Table 4
Obtaining a higher yield and heating value of biodiesel, while minimizing power
consumption.

Var. Goal Min. Max. Optimum

A Min 6.00 9.00 6.90
B Min 1.00 2.00 1.00
C Min 20.00 40.00 20.00
D Min 500.00 1000.00 500.10
E Min 20.00 40.00 30.00
η Max 0.00 100.00 97.76
HHV Max 0.00 45.06 43.19

Generation 12
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3.3. Life cycle assessment in biodiesel production

3.3.1. Goal and scope definition
The definition of the goal and scope is the first step in the life cycle

assessment method. Therefore, it is necessary to clearly define these two
matters. The main goal of this research is to employ the LCAmethod as a
tool for evaluating and assessing the environmental burden of biodiesel.
The production of 1 kg of biodiesel from waste cooking oil was the
functional unit that was chosen to specify the desired result of this
research. NaOH was selected as the transesterification catalyst for this
biodiesel production procedure, and RSM determined the optimum
process parameters: catalyst dose (A) = 1 wt%, methanol-to-oil molar
ratio (B) = 6.9 mg/L, reaction temperature (C) = 30 ◦C, reaction time
(D) = 20 s, and stirring speed (E) = 500.1 rpm.

The scope of the LCA in the production of biodiesel from waste
cooking oil is has been “gate-to-gate”. This means that the boundaries of
this method included each input parameters of the transesterification
process. However, the waste cooking oil transportation was not
considered. As a result, the power used (W) by the magnetic hot stirrer,
the reagents (methanol and sodium hydroxide), and the use of deionized
water to eliminate residues of alcohol were taken into consideration in
the life cycle assessment (LCA) approach in the present research.
Although the amount of electricity (W) used to wash the biodiesel
matched that of a low-voltage electrical source, the deionized water
used was equivalent to natural water.

3.3.2. Midpoint indicator impact assessment
SimaPro v.9.2.0.2 software was used to process the data and better

comprehend the environmental impact. In this research and for
midpoint indicator assessment, LCA was based on baseline CML-IA
v3.06. This baseline approach for impact assessment limits the method
to the first phases of the cause-and-effect chain. It offers simple handling
and high transparency [52]. The Ecoinvent 3 database provided the
inventory data for the inputs, whereas the process simulations provided
the information on the material and energy utilized. This life cycle in-
ventory includes all economic activities for various human activities that
were involved in this biodiesel production process.

The midpoint indicator assessment revealed eleven categories of
impacts on the environment, human health, and resources. These
include eutrophication, acidification, global warming, ozone layer
depletion, human toxicity, photochemical oxidation, abiotic depletion,
abiotic depletion (fossil fuels), fresh water aquatic ecotoxicity, marine
aquatic ecotoxicity, and terrestrial ecotoxicity. The release of excessive
nutrients leads to eutrophication. In the acidification, the size of the
acidifying impact varies significantly based on the characteristics of the
ecosystem exposed to acidifying substances. One of the primary envi-
ronmental indicators is the global warming potential, which is deter-
mined by greenhouse gas emissions and is measured over a 100-year
period [53]. Ozone layer depletion has a forty-year lifespan. Halides, a
measure of human toxicity based on exposure to and interaction be-
tween the body and the hazardous substance, are the key factors influ-
encing it. The release of active molecules that are detrimental to
ecosystems and public health is known as photochemical oxidation. The
unit of measurement for abiotic depletion is kilograms of antimony
equivalent (kg Sb eq). It is in line with the exhaustion of fossil fuels.
Fossil fuel extraction is associated with abiotic depletion (fossil fuels).
The assessment of environmental toxicity in the biodiesel process takes
into account the harm that is done to freshwater and groundwater
sources, as well as the release of acidifying compounds into the envi-
ronment [54]. Fresh water aquatic ecotoxicity, marine aquatic ecotox-
icity, and terrestrial ecotoxicity are the three main categories into which
it is separated.

Table 5 and Fig. 3a show the results for the biodiesel production
using waste cooking oil based on CML-IA baseline of midpoint indicator.
Comparing these results with those of other researches, it can be seen
that they are lower than those obtained for fossil diesel production [55].

The fact that sodium hydroxide, the catalyst utilized in this study, is less
toxic than the ingredients used in the manufacturing of diesel, explains
why the creation of WCO biodiesel was less dangerous. Furthermore, it
is shown low environmental impacts since used cooking oil was gath-
ered straight from restaurants and the calculations did not include
agriculture or production stages. The same conclusion was obtained in
the study of Chung et al. (2019) [56]. The environmental effect level for
this biodiesel production process was found to be lower than that of
other forms of biodiesel manufacturing. For example

Table 5
Impact category results for CML_IA baseline midpoint indicator assessment.

Impact category Unit Result

Abiotic depletion kg Sb eq 8.447E-08
Abiotic depletion (fossil fuels) MJ 12.876
Global warming (GWP100a) kg CO2 eq 0.451
Ozone layer depletion kg CFC-11 eq 4.05E-09
Human toxicity kg 1.4-DB eq 0.136
Fresh water aquatic ecotoxicity kg 1.4-DB eq 0.043
Marine aquatic ecotoxicity kg 1.4-DB eq 159.002
Terrestrial ecotoxicity kg 1.4-DB eq 1.531E-04
Photochemical oxidation kg C2H4 eq 1.412E-04
Acidification kg SO2 eq 2.281E-03
Eutrophication kg PO4 eq 6.537E-05

Fig. 3. (a) Normalized CML-IA baseline results diagram for midpoint indicator
and (b) Normalized ReCiPe baseline results diagram for endpoint indicator.
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Hosseinzadeh-Bandbafha used palm kernel shell-derived sulfonated
magnetic biochar and obtained higher values of global warming, acid-
ification, terrestrial ecotoxicity, or fresh water ecotoxicity [15].

3.3.3. Endpoint indicator impact assessment
In the current research, ReCiPe 2016 Endpoint (E) v1.03 was used for

endpoint analysis. The endpoint indicator revealed three categories of
impacts: (1) human health, (2) ecosystems, and (3) resources. In regard
to human health, the number of illnesses linked to life years (measured
in disability-adjusted life years (DALY)) rises as a result of environ-
mental degradation. Acidification, ecotoxicity, eutrophication, and land
utilization (measured in species * years) are examples of ecosystems.
Resources directly affect the amount of raw materials used and the
amount of energy consumed (represented in dollars).

The results of damage impact based on ReCiPe baseline endpoint
indicator assessment are shown in Table 6.

A normalizing procedure was employed in order to compare the ef-
fect assessment of this damage categories. This was accomplished by
multiplying previous results by a weighting factor. Because the weighted
findings have the same units, they could be combined to yield a single
environmental impact rating. As can be seen in Fig. 3b, the highest
damage category value was human health, followed by ecosystems and
resources. This might be as a result of using energy and catalyst in the
transesterification process. It raised the volume of gasses that are haz-
ardous to human health. However, this result is lower than those ob-
tained in the study of [57]. Furthermore, when comparing the results
with those obtained without the use of waste cooking oil [58], the same
conclusion is reached as in the midpoint indicator assessment. The re-
sults are lower when waste cooking oil is used rather than being
included in the production process.

3.4. Strength, weakness, opportunity and threat (SWOT)

The SWOT analysis is used to analyze development plans according
to importance within a given industry [59]. It assesses methodically
every possible angle or strategy, identifying obstacles and advantageous
circumstances. The SWOT analysis concentrates on strengths, weak-
nesses, opportunities, and threats. An operational resolution may be
aided efficiently by examining concurrently the qualities of internal and
external systems. This is the main goal of a SWOT analysis. Depending
on its origin, the SWOT analysis includes two categories, namely inter-
nal origin (strengths and weaknesses) and external origin (opportunities
and threats) [60].

A SWOT analysis was conducted in this research in enhancing the
efficiency and competitiveness of strategic planning for management of
the waste cooking oil in biodiesel production. The analysis was under-
taken to explore improved approaches for biodiesel production within
the waste cooking oil value chains. This initiative not only contributes to
refining strategic planning, but also to open opportunities to expand and
enhance the value chains. In the context of biodiesel production from
waste cooking oil, SWOT analysis serves as a valuable tool for strategic
planning. Strengths encompass the advantageous features of the pro-
duction process, while weaknesses highlight areas for improvement or
limitation. Opportunities represent avenues for leveraging resources and
capabilities, while threats denote potential challenges or risks to the
project’s success. This SWOT analysis for biodiesel production has been
conducted, taking into account observations made during the produc-
tion process itself, as well as insights gained through brainstorming

sessions and relevant literature. For instance, the research of Liu et al.
(2018) [61] aims to use SWOT analysis to assess the strengths, weak-
nesses, opportunities, and threats associated with waste cooking oil as a
raw material for biodiesel production. Similarly, the study of Khan et al.
(2021) [62] delves into various production and utilization aspects of
biodiesel derived from waste cooking oil.

Table 7 illustrates the analysis, highlighting the advantages and
potential challenges of implementing biodiesel production using waste
cooking oil. This analysis aids comprehension of this process to achieve
objectives and draws bring attention to areas that are overlooked or
undeveloped.

4. Conclusions

This study focuses on multi-objective optimization utilizing Genetic
Algorithms (GA) to identify the optimal set of input process parameters
for sustainable biodiesel production. Artificial Intelligence (AI) tech-
niques were applied to assess and optimize the effects of five critical
factors in biodiesel production: catalyst dose (A), methanol-to-oil molar
ratio (B), reaction temperature (C), reaction time (D), and stirring speed
(E). The main output variables analyzed were the yield and HHV of the
produced biodiesel. The results showed that under ideal con-
ditions—specifically, a reaction temperature of 30 ◦C, a methanol tooil
ratio of 1:6.9, a stirring speed of 500.1 rpm, a reaction time of 20 s, and a
catalyst concentration of 1—the transesterification process achieved a
maximum biodiesel yield of 97.764 %. This demonstrates the high ac-
curacy of the optimized parameters, with a Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) closely matching the experimental
results at 0.1678 and 0.1679, respectively. Additionally, a Life Cycle
Assessment (LCA) was performed, utilizing both midpoint and endpoint
indicators to evaluate the environmental impacts. This analysis
concluded that the environmental footprint of this biodiesel production
method is significantly lower compared to other biodiesel production
techniques, highlighting its efficiency and sustainability. Additionally, a
SWOT analysis was conducted to evaluate and enhance strategies for the
biodiesel production value chains from used cooking oil. This analysis
plays a vital role in identifying and capitalizing on potential opportu-
nities to expand biofuel production value chains. By thoroughly exam-
ining the strengths, weaknesses, opportunities, and risks that are
associated with these value chains, the analysis sheds light on the most
effective ways to utilize used cooking oil for biodiesel production. This
approach not only addresses the critical challenges of waste manage-
ment. but also contributes significantly to a sustainable solution in
meeting the growing demand for biofuels. The continual research and
development in optimizing this process are essential and further solidify
its feasibility as a sustainable approach. This aligns with the broader

Table 6
Damage category results for ReCiPe baseline endpoint indicator assessment.

Damage category Unit Result

Human health DALY 6.897E-06
Resources USD2013 0.023
Ecosystems species.yr 1.069E-08

Table 7
SWOT analysis for biodiesel production by waste cooking oil.

Strengths Weaknesses

Use of recycled vegetable oils Lack of raw materials due to high
demand for biofuel

Does not interfere with other industries Raw material instability
Contributes to the improvement of the
environment

High initial investment

High quality and efficiency in the
biodiesel obtained

High production cost

Opportunities Threats

Growing need for the use of
renewable energy

New competitors

High demand Lower production than planned
Utilization of used oils Lack of agreement with raw material

suppliers
Supply of raw materials Decrease in the price of oil
Lower environmental impact Improved production of renewable energy in

other industries
Replacement of fossil fuel
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global efforts to transition to renewable energy sources, highlighting the
importance of sustainable practices in the biofuel industry. Future ini-
tiatives should prioritize conducting detailed energy analyses. The
intention is to gain a thorough understanding of the sustainable pro-
duction of biodiesel derived from different types of used oils. This should
be achieved by leveraging advanced technological tools, which can
provide deeper insights in the biodiesel production process.
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